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Steady flow of an incompressible homogeneous fluid over shallow topography in a 
rotating annulus is considered. The flow is driven by a differentially rotating lid. The 
recycling nature of the system means that prescribed upstream conditions are not 
available to close the problem. Consideration of the balance of transport across 
streamlines for the geostrophic flow leads to a general circulation condition; namely 
r($) = *FT($), where $ is the stream function for the geostrophic flow, I' is the cir- 
culation around a streamline and rT is the circulation around the same path calcu- 
lated using the prescribed upper surface velocity. Using this condition, stream 
functions for the linear viscous and nonlinear quasi-inviscid flow can be found. Solu- 
tions for these two limits, and linearized perturbation solutions for the transition 
regime between them, are presented for flow over ridges in the annulus. 

1. Introduction 
It is well known that small variations in bottom topography in a rapidly rotating 

system can cause large deviations in a current passing over them. The relevance of 
this phenomenon to geophysical problems, such as ocean currents crossing submarine 
ridges, has been the motivation for several studies. For example Boyer (1971 a, b )  has 
investigated steady homogeneous flow over infinitely long, shallow ridges theoretically 
and experimentally, considering both viscous and inertial effects. Huppert & Stern 
(1974u, b )  have studied homogeneous and stratified systems with side walls. They 
found the effect of side walls on the flow over an obstacle, and showed that in the 
stratified case ageostrophic effects are important near the side walls. 

These and other theories rely on the specification of a known upstream flow. For 
some systems, however, no such upstream region can be defined. An example of such 
a system is the Antarctic Circumpolar Current, which is a mean eastward flow in an 
annular region roughly bounded by the circles of latitude a t  50 "S and 65 "S. It is a 
deep current, and consequently its path is influenced by the bottom topography. 
The aim of the theory presented here is to find a way of solving the recycling problem 
for conditions varying from linear viscous (when advection effects are negligible) to 
almost inviscid (when inertial effects dominate). 

With particular reference to the Antarctic Circumpolar Current, therecycling problem 
has been examined previously by Kamenkovich (1962) and Johnson & Hill (1975). 
These papers differ from the present case in that topographic variations comparable 
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with the ocean depth and linear viscous flow with a varying Coriolis parameter f 
were considered. Under these conditions, to a first approximation, the current follows 
lines of constant f/H, where H is the varying ocean depth. The existence of a circum- 
polar current then depends upon the presence of suitable closed f / H  contours. Un- 
fortunately no such contours exist in the Antarctic region. (Contours of H / f  have 
been given by Gill & Parker 1970.) These theories show however that the circumpolar 
volume transport is strongly influenced by the topography. More recently Hart (1977) 
has investigated rotating flow in a cylinder, with potential vorticity conserved to 
zernth order, and shown how topography can influence the zonal transport. 

I n  the theory presented in this paper, the effects of shallow obstacles are analysed 
and it is found that these can have a large effect on the transport. The particular 
system considered is a rotating annulus with homogeneous flow driven by a differen- 
tially rotating lid. Some solutions are given for plateau topography which varies 
azimuthally only. Laboratory experiments with qualitatively similar topography have 
been carried out by Maxworthy (1977), and there is qualitative agreement between his 
experiments and this theory. 

I n  5 2 the general non-dimensional equations governing the zeroth-order geo- 
strophic flow are given. The dynamics of different parameter regimes are explained 
and related in terms of a spin-up length. I n  0 3 the conditions needed to  close the 
problem are found by considering the radial transport balance. The general result is 

r(@) = *rT(@), 

where @ is the stream function for the geostrophic flow, is the circulation around a 
streamline and r r  is the circulation around the same path calculated with the pre- 
scribed velocity of the upper surface. For the linear viscous regime it is shown that, 
taken together with the obvious boundary conditions, this result is both necessary 
and sufficient for a unique solution. It is thought also to be necessary and sufficient 
in the other regimes studied. 

Linearized perturbation solutions for all regimes, assuming very shallow topography, 
are given in 5 4, and the transport is obtained correct to second order in the topography 
height. The relation of our solutions for the inviscid regime to those determined inde- 
pendently by Hart (1977) for a cylinder will be discussed in 5 4. Exact solutions for 
linear viscous and inviscid flow are given in $ 5  5 and 6. Finally the results are sum- 
marized and points of qualitative agreement with experiments are noted. 

2. The basic equations and parameter regimes 
A cylindrical polar co-ordinate system ( r ,  8, z )  rotating with angular velocity 

(0, 0, Q) is chosen. The components of velocity relative to the rotating frame of re- 
ference are (u, v, w). Let p be the density of the fluid, assumed constant, and v the 
constant coefficient of kinematic viscosity. The reduced pressure p is defined by 

where P is the fluid pressure, Vr$ represents body forces (it is assumed that only body 
forces which can be expressed in terms of a potential (p are present) and R is the 
horizontal distance from the axis of rotation. 
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u = U(u*,v*,w*H/L),  r = Lr*, z = Hz*, p = 2QpULp*, (2.1) 

Non-dimensional variables are defined as follows : 

where the non-dimensional quantities are temporarily denoted by asterisks. The 
characteristic scale of the horizontal velocity is U ,  L is a horizontal length scale and 
H is a vertical length scale, taken as the height of the annulus in the absence of topo- 

The non-dimensional momentum and continuity equations for incompressible flow 
graphy. 

are (dropping the asterisks) 

E ( U .  V u  - v z / r )  - v = -p,  + ~Eu, ,  + &Ey2(Vg u - 2v,/r2- u / r 2 ) ,  

~ ( u .  V v  + u v / r )  + u = - p o / r  + &Ev,, + 4Ey2(V& v + 2u,/r - v / r2 ) ,  

( 2 . 2 ~ )  

(2.2 b )  

(2.2c) 

v.u = 0, (2.3) 

Y'EU. VW = -p,  + 4Eyz((r2Vi  w + w,,), 

where V g  is the horizontal part of the Laplacian operator. The following non-dimen- 
sional parameters appear: 

and 

E = U / 2 f 2 L  

E = v/QH2 

y = H / L  

(the Rossby number), 

(the Ekman number) 

(the aspect ratio). 

Both E and E are assumed small ( E ,  E < 1 )  and the case y 5 1 is considered. (These 
magnitudes are characteristic of large-scale geophysical flows and most of their 
laboratory analogues.) Asymptotically, y is taken to be at most O( 1 )  as E ,  E 3 0. 

An equation for the vertical component [ of the relative vorticity, obtained from 
(2.2) and (2.3),  is 

eu . Vc+ s[v,(rw), - u,w,]/r = w,(l+ 4) + BE(y2V& 6+ C,,). (2.4) 

If the O ( E )  and O(E) terms are neglected in (2.2) and (2.3) the system is geostrophic 
and the equations are degenerate. To resolve the degeneracy higher-order effects 
must be considered. Further, for this homogeneous fluid, the geostrophic flow is 
independent of z ,  so any boundary conditions applied to the geostrophic region will 
affect vertical columns of fluid uniformly. Under these circumstances small variations 
in bottom topography may have a strong effect on the main flow, as is well known. 

The geometry of the system to be investigated is shown in figure 1. Vertical side 
walls are situated a t  r = rl and r = r2. The bottom topography is given by z = h(r ,  0). 
The bottom and side walls are a t  rest relative to the rotating frame of reference. The 
flow in the annulus is driven by a horizontal surface velocity uT(r, 0) prescribed a t  
z = 1.  Particular examples are later given for flow driven by a rigid lid rotating at  a 
uniform dimensional rate An relative to the rotating frame. (Note that for 8 to be 
small Af2/f2 must be small.) 

No-slip conditions are applied a t  the solid boundaries, and thin boundary layers 
form there. Near the side walls a complicated structure involving a t  least two length 
scales is present, similar to that of the vertical shear layers investigated by Stewartson 
(1957). There is a layer of thickness O(Ef)  within which the vertical and normal velocity 
components are matched to the side-wall velocity. There is also an O(E4) layer, which 
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FIGURE 1. Geometry of the rotating annulus. (a )  Cross-section through 
the centre, showing boundary layers. ( b )  Plan view. 

is required to match the tangential component of the horizontal velocity. These side- 
wall layers serve only to match the O(1) interior flow to the no-slip conditions on 
r = r l  and r = r2. They do not otherwise affect the dynamics of the 0 ( 1 )  flow. The main 
points are that they are thin, since we assume Ei < 1,  and that, under the terms of 
reference of this theory, there is no O( 1 )  geostrophic flow into these layers. 

On the upper and lower boundaries there are Ekman layers of thickness O(E3). 
Again, since E* < 1 there is a well-defined O(1) interior region, indicated by dashed 
lines in figure 1.  The analysis of Ekman layers is a standard procedure, so only the 
results needed later are given here. Asymptotic expansions of the form 

u = d o ) + f ( e ,  E)u(')+ ... (2.5) 

are used. For the Ekman layers, EB is the appropriate form for f(e, E ) .  The analysis 
of the upper Ekman layer gives a boundary condition on the vertical velocity a t  the 
edge of the interior region: 

(2.6) 

where CT is the prescribed surface vorticity and the subscript I refers to the interior 
region. For the lower layer the variation of the bottom topography adds a kinematic 
term u . V h  to the Ekman suction, and the boundary condition is 

w z ( ~ ,  8,1) = &E$(CT - Cia)) + O(E), 

wI(r,  8, h )  = $EiC(f) + uy). V h  + O(E, eh).  (2.7) 

(Derivations of this condition can be found in Boyer (1971 a )  and Huppert & Stern 
( 1 974 b )  . ) 

Equations (2.6) and (2.7) lead to restrictions on the topography which the flow can 
pass over and remain geostrophic. From (2.6),  wZ(r ,  19, I )  is O(E4). The vorticity equa- 
tion (2.4) applied to the interior says that wIz is O(e) or O(E) ,  whichever is larger, and 
that wzz is independent of z to that order. If e is O(E*) or less, then wI can be a t  most 
O(E*) on the lower boundary. Hence uio). V h  is restricted to O(E3). If e is greater than 
O(E*),  then ui0). V h  is similarly restricted to be O(e) .  The result is that the geostrophic 
flow can pass over only topography that varies by O(p) in the direction of flow, where 

p = max(e,E*). 
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In  later sections, topography consisting of ridges extending from one side wall to the 
other is considered. For significant flow to cross such ridges, h must be restricted to 
be O(p)  or less. If h is O( 1) as p 4 0 then the flow is blocked by the ridges, as shown by 
Carrier (1965). We also restrict V h  to be O(p) ,  though this is not essential. (If V h  is 
O( 1)  and h is O ( p ) ,  then the flow still crosses the ridges but thin vertical ageostrophic 
shear layers form where Vh is relatively large.) 

The differential equation for the geostrophic flow can now be found. The vorticity 
equation to O(p) contains O(1) variables and the term wIz. The latter is in turn ex- 
pressed in terms of O(1) variables by using (2.6) and (2.7) together with 

wzz = p[wy)(r ,  8, 1 )  - wp)(r, 8, h)]  + O(E,ph). 

(For interior variables, f ( e ,  E )  = p is used in the asymptotic expansion.) Then the 
vorticity equation gives the approximate equation upon which the subsequent work 
is based: 

e ~ $ ~ ) . V c $ ~ ) + u $ ~ ) . V h  = E&(&cT--cio)) +O(E,ph).  

The first term represents vorticity advection by the interior flow, the second term 
contains the topographic effect and the third term represents dissipation of vorticity 
by Ekman suction. 

(2.9) 

For the geostrophic interior 

= a p ,  ( 0 )  /ar, uiO) = - r-1ap$0)/a8. 

Consequently a stream function can be defined by 

An alternative form of (2.9) is then 

(2.10) 

where J is the Jacobian operator, 

Three main parameter regimes may be distinguished. If E 4 E i ,  then the nonlinear 
inertial term is neglected in (2.9) to give 

c$O’ + UP). Vh/EJ = &&, (2.11) 

where h is O(E4). This is referred to as the linear viscous regime. 

(2.12) 
for the inviscid regime is 

This means that potential vorticity (1 +sc)/(l - h )  is conserved to O(e) .  From (2.12), 
cp) + h / e  must be a function of the stream function alone. This gives 

f ; i O ) + h / E  = F($) .  (2.13) 

If the system were driven by known upstream conditions then F($) would be known. 
For the recycling problem, however, F($)  has to be determined from the higher-order 
viscous effects which ultimately drive the flow. 

The third regime, with s N E*, is an intermediate one in which both viscous and 
inertial effects must be retained. 

When E i  < e,  the Ekman-suction term is neglected to O(s)  and the vorticity equation 

u‘l). V(@ + h/E) = 0. 
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The dynamics of these regimes are linked by the concept of a spin-up length. The 
interior vorticity is changed by Ekman-layer dissipation on a non-dimensional time 
scale E-4. A vertical column of fluid travels a distance O(eE-4) in this time, and this 
distance is the spin-up length. When E < E4 the spin-up length is very small, and 5 is 
determined locally by the topography gradient, as in (2.11). As e is increased with 
E i  and h unchanged (by increasing the driving rotation rate, for example), the spin- 
up length increases and becomes increasingly out of phase with the local topography 
gradient. If E is increased until E 9 E*, with h still O(E4)) then columns of fluid pass 
over topography variations so quickly that the Ekman suction has no time to alter 
the vorticity significantly. The change in 5 due to the stretching and compressing of 
vortex lines as h varies is O(h/e) ,  so this mechanism has a negligible effect when 
h < e .  Hence the topography has no significant effect on the interior flow when h is 
much smaller than e.  

If h is O(E) and E 9 E4, then only the topographic stretching as a fluid column 
follows a streamline is important in changing the vorticity. As expressed by (2.13), 
this change is relative to some as yet unknown value F($) for each streamline. 

3. Boundary and circulation conditions 
To complete the formulation of the mathematical problem, boundary conditions 

for the differential equations are needed. Since there is no O( 1) flow into the side-wall 
layers the side walls are streamlines for the geostrophic flow, and hence $(rl) 8) and 
3b(r2, 8 )  are both constant. These constants are related by the quantity Q defined by 

Q = j r g t p d r  = $p2, 8 )  - $(rl, 8). 
h 

Since u$" is independent of depth and the depth is unity to zeroth order, Q is equal to 
the net azimuthal transport in the system to zeroth order. It is convenient to choose 

$(ri, 8 )  = 0, $(r23 8)  = Q .  (3.la, b )  

There is also a periodicity condition to be applied because $ is single-valued: 

$(r,  8)  = $(r,  8 + 277). (3.2) 

The problem is not yet well posed because the constant Q cannot be determined from 
the differential equations and the above conditions. The extra information needed is 
found by considering the transport of fluid from one side wall to the other, a higher- 
order effect. The net transport must be zero, since the boundaries are solid and im- 
permeable, but there are several contributing factors to be balanced against each other. 

The local transport is defined by 

u = ( U )  V )  = (u ,w)dz .  shl (3.3) 

The O(1) horizontal velocity in the Ekman layers gives an O(E4) contribution to U. 
Since the driving stress is transmitted to the interior via the Ekman layers, and it is 
information about the surface stress that is missing from the problem as posed so 
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far, the transport must be calculated to O(E*). The local Ekman-layer transport to 
O(E*) is 

where (uT, vT)  is the prescribed surface velocity. 
First the linear viscous and intermediate regimes are treated together, since the 

Ekman layers give a first-order contribution in each case. The inviscid case is discussed 
later. To O(E*),  

U, = E * [ ~ ( V ,  + uT) -UP) - V ~ O ) ,  ~ ( v T  - uT) + uY) - V I  (O) I, (3.4) 

where h is O(p). The velocities are henceforth interior velocities, unless otherwise 
indicated. Consider the net transport T across a vertical sheet defined by h < x < 1 
and any closed curve in the r ,  8 plane with r1 < r c r2. The transport due to do) is 

To = (1  - h )  k.U(O) x dl, I 
where the integral is taken around the closed curve with line elements dl, and k is 
the unit vector-(O,O, 1). This gives 

(3.7) 

where ds is the arc length measured along the curve. To find the first-order interior 
transport, the momentum equations (2.2) are used to express (u@),v(l)) in terms of 
(do), d o ) ) .  We have 

,e(u(O). V) u(0) - ,3$0)2/r - pv(U = - pp(1) r 9  ( 3 . 8 ~ )  

e(u(0). V) do) + su(O)w(O)/r +p&) = --pp$l)/r, ( 3 . 8 6 )  

p:1) = 0.  ( 3 . 8 ~ )  

From (3.8c), ( ~ ( l ) ,  ~ ( 1 ) )  is independent of z. The transport due to (&, v(U) is, neglecting 
higher-order terms, 

Tl = p k.u(l) x dl 

The Ekman-layer transport is, from (3.4), 

(3.9) 

(3.10) 

where I? and r r  denote the circulation around the curve due to the geostrophic and 
upper-surface velocities respectively. Note that the transport due to the upper 
Ekman layer is *E*( rT - I?) while the contribution from the lower Ekman layer is 
- &E*I?. 

To Ofp), the net transport is 
T = To+Tl+TE = 0, 



(3.11) 

If the path of integration is a streamline then $ is constant, and (3.11) gives the cir- 
culation condition 

r($) = ! i F T ( $ b  (3.12) 

For a streamline that does not encircle the inner side wall (i.e. a reducible stream- 
line), (3.12) can be derived from (2.9). The flow along such st'reamlines does not 
contribute to Q,  however, so the transport analysis is necessary to close the problem. 

An expression for Q can be found from (3.11) by using circles r = ro as paths of 
integration. This gives 

This is true for all ro. Integrating with respect to r leads to 

(3.13) 

where Qo = JTya,dr. 

In  the linear viscous case, the nonlinear part of (3.13) is neglected to give, after 
integrating by parts with respect to 0, 

(3.14) 

(Here Qo is the net azimuthal transport when t,he topography is flat.) It is shown in 
appendix A that this condition is both necessary and sufficient for the determination 
of a unique stream function. 

For the inviscid regime, suppose that E* is a t  least O(c2). Then the local transport 
to O(E*) is, with expansions of the form u = do) + eu(1) + Eh(2)  + . . . and 

h = h(0) + eh(1) + . . . 
(where is O(s)) ,  

If y2 is O( l ) ,  then pL2) depends linearly on z because w(1) is linear with respect to z. 
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The transport across a vertical sheet is calculated as before. The second-order 
interior flow leads to the term 

T2 = E* s' f k . d2) x dldx 
0 

(3 .16a)  

( 3 . 1 6 ~ )  

The other terms in the net transport are found in the same way as in the previous case. 
The result is 

T = - E t ( r  - +rT) - E (h(O)+ &(I)) k .dl) x dl + (e[(O)+h(O)+ &))- ds + T2 = 0. 
(3 .17)  

f ds 

To O(e), this gives 
€'P($)%dS = 0. 

No new information is gained because F and 9 are single-valued. 
To O(E*),  retaining terms O(e2) ,  

- E i (  - *I?,) + e2 f (c(l) + h(l)/e) F($)  k .  u(l) x dl = 0. (3.18) 

Suppose that the path of integration is a streamline. Then F is a constant and 

$ F(@) k . d l ) x  dl = F(+)$Qo)rds. d$ 
8 

Hence, with F constant, (3 .18)  gives 

r($) = irT($). (3.19) 

This result is the same as that for the other regimes. It is a consequence of there 
being no net interior flow to O(E4) across a streamline for the geostrophic flow. The 
flow around each streamline is in local balance with the driving stress from the surface 
and the dissipation a t  the lower boundary. The net transports across the streamline 
due to the upper and lower Ekman layers are equal and opposite. 

Note that the circulation condition is independent of viscosity, though it is deter- 
mined by viscous effects. I n  this respect it is analogous to the integral condition used 
by Batchelor (1956) for inviscid flows with closed streamlines. We have shown that the 
circulation condition holds for E* N en with n = 1 ,2 ,  and we conjecture that it is 
true for any positive integer n. For the special case cT = constant (e.g. flow driven by a 
rigid lid), the condition can be used to prove that Q < Qo with equality if and only if 
h = h(r). (See appendix B.) 

An equation for Q for this inviscid case can be found as for the other regimes, giving 

The vorticity equation to O(E*) is 



606 M .  R. Davey 

Using ws = [E'( $CT - 5)  - u.  Vh]/(  1 -h),  

the O(Et,s2) terms in (3.21) give 

sZu(1). V("0) + h@)/s) + €2U(O). V ( p  + h(l'/€) + €(p +A,@)/€) Vh@) = E'(+CT - fp). 
(3.22) 

This can be rearranged using the continuity equation to obtain 

E2vH [ ( gcl) + h(')/s) 21") + ([(') + h(')/S) ?.&(l)] = Et( ' C  2 T  - C'"), (3.23) 

where V H  is the horizontal component of the gradient operator. From (3.20) and (3.23)) 

(3.24) 

[This equation also holds for the other regimes, from (2.9) and (3.13).] Hence the 
transport equation is independent of Et for the inviscid regime. This is consistent with 
being able to find the zeroth-order flow from (2.12) and (3.19)) as in 3 6. 

4. Perturbation solutions 
The combination of nonlinear effects and non-conservation of potential vorticity 

makes it very difficult to obtain general sofutions of the vorticity equation (2.10) 
subject to the circulation condition (3.12) and the boundary conditions (3.1). However 
analytic approximations can be found when the disturbance to the flow is small. 
I n  this section such solutions are given for flow driven by a rigid lid. A symmetric 
bottom topography h(8) represented by the Fourier series 

m 

h = h, g,cosn8 
n=O 

(4.1) 

is chosen, where h, is a height scale. 
When the topography is flat, the stream function is 

$ = $0 = BQZT(r2--3, (4.2) 
where QT is a non-dimensional differential rotation rate of the rigid lid. (For all 
examples given later, QT = 1 is used.) Substituting $ = $,+# into (2.10) gives 

Q~(EV'$ + h),  + J(#, eV2$ + h)  + EiV2# = 0, (4.3) 

(i5 = S#1+s2#2+..., (4.4) 

S = h, / (E  + E ~ Q ; ) ~ .  (4.5) 

where Q, = $QT. To find perturbation solutions, rj5 is expanded as 

where the expansion parameter S is given by 

This choice of 6 leads to an expansion valid for all sufficiently small E and Ei. 
Neglecting terms O(S2) as S 4 0  asymptotically in (4.3) gives 

m 

SeQ, F2$,, + SEiV2#, = QI h, ngn sin n8. (4.6) 
n-1 



Recycling flow over topography 607 

Equation (4.6) can be solved to find the perturbation vorticity 

m 

n = l  
V2$, = x A ,  cos no + Bn sin no, 

with 

nE&l,g,(E + e2Q?)* 
E + n2e2Q2f . B, = 

(4 .7)  

( 4 . 8 ~ )  

(4.8b) 

Note that V2#, is a function of 0 only, and that it is independent of the average topo- 
graphy height 

= ( 2 ~ r ) - l / : ~ h d O .  

The boundary conditions needed to determine #1 are obtained from the transport 

Q = Qo+ (2~EiQ,) -1S::r -1J~n#[~(# ,8V2$+h)+E*V2$]dBdr  ( 4 . 9 ~ )  

equation (3.13).  Using (4 .3) ,  this can be rewritten as (with an integration by parts) 

= Qo + PQ2 + O( a3). 
There is no correction to Qo to 0(6), so the required boundary condition is 

Equation (4 .7 )  then leads to 
q51 = 0 on r = rl,r2, 

m 
q51 = C. B,(r) [A,  COB n0 + B, sinno], 

n = l  

where R,(r) is defined by 

I d dR, 
d r (  d r )  

r -  r- - n 2 R , = r 2 ,  

(4 .9b)  

(4.10) 

(4.11) 

(4.12) 

R, = 0 on r = rl,r2.! 

The coefficients A ,  and/or B, are O( 1 )  for all E* and E ,  so #1 will be O( 1 )  and $ will be 
O(6) as 6-+0 under all conditions. From (4 .9 ) ,  the correction a2Q2 to the transport is 

m 

a2Q2 = a2(2Q2,)-l x ( A g + B i )  R,r-ldr 
n = l  J: 

n = l  /: 
a 

= JQ,hi C. n2gt(E +n2E2R:)-l R,r-ldr.  (4.13) 

Q2 is O( 1 )  and, since it can be shown that R, is negative for rl < r < r2, the correction 
is always negative. 

The boundary conditions for #2 are 

#2(r1, 8) = 0, # 2 ( ~ 2 , @  = Q2. (4.14) 

Hence $2 can be calculated, and the transport determined to O(S3). In this manner, 
the solution $ can be found to any order in 8. 
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FIGURE 2. Perturbation vorticity SV2q5, over plateau h(8) with h, = 0.2. (a)  E* = 0.1, B + 0. 
( b )  E* = 0.1, E = 0,l. ( c )  E* = 0.01, E = 0.1. (d) E) + 0, B = 0.1. (e) Plateau-topography 
profile h(0) .  

The change in Q is caused by the nonlinear interaction of the perturbation velocity 
and potential vorticity. This leads to a change in the mean (zonally averaged) flow. 
To O ( P )  this change is given by 

03 

&dI3 = (2!2,)-l Z ( A i + B i )  (4.15) 
n = l  

This analysis is valid for all E and E*. I n  particular, solutions for the linear viscous 
and inviscid limits are obtained by finding the general solution and then using e+O 
and E4-t 0 respectively. The dependence on the height scale h, is the same in all cases. 
From the first approximation, the perturbation velocities depend linearly on h, and 
the transport decrease depends on h& 

The perturbation vorticity SV2q5, for flow over plateau topography for varying e 
and E* is shown in figure 2. (The plateau for these and all subsequent examples has 
8, = &TI and 8, = &TI and we take rl = 1 and r2 = 3.) The corresponding streamlines 
(contours of $, + are given in figure 3, and the transports Q,  + S2Q2 are given in 
table 1 .  Values of 6 somewhat greater than 1 can be used, even though the theory is 
an asymptotic one for 6+ 0. It is shown later that solutions with large 6 can be good 
approximations to the exact solutions. One reason for this is that the large flow per- 
turbations (e.g. flow reversal) that occur for such values of 6 are restricted to small 
regions. Throughout most of the flow, it is found that the higher-order terms are 
numerically small. 

For linear viscous flow, the coefficient A ,  is zero and the stream function is anti- 
symmetric with respect to 13. The perturbation vorticity is instantly dissipated in flat 
regions (see figure 2a) and is elsewhere proportional to the topography slope. The 
effect of recycling on the flow pattern (figure 3a) is small because the flow is nearly 
undisturbed away from the obstacle. The streamline deviation is inward over a 
positive slope and outward over a negative slope. When 6 = h,/E* is larger than a 
critical value a1 = 0.85, a gyre appears near the inner side wall over the downstream 
end of the plateau. Flow reversal first occurs a t  r = r l ,  I3 z &TI. For 6 > 6, = 2.9 a 
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FIGURE 3. Flow over plateau topography with ho = 0.2. The stream function @o+&b, is con- 
touredat equal intervals. (a )  E t  = 0.1, E +0 .  ( b )  E4 = 0.1, E = 0.1. (c) E* = 0.01, E = 0.1. 
(d) E* +o ,  € = 0.1. 

Example E t  E h0 Q T  Q 
( a )  0.1 0 0.2 1 1.80 
( b  1 0.1 0.1 0.2 1 1.89 
( c )  0.01 0.1 0.2 1 1.66 
(4 0 0.1 0.2 1 1.63 

TABLE 1. Transport Q = Q,, + ti2&, for the flows shown in figures 2 and 3. 

second gyre appears near the inner side wall over the downstream end of the plateau. 
Flow reversal first occurs a t  the inner side walI because the undisturbed flow is slowest 
there. (Note that the critical S values depend upon the shape of the obstacle. For 
example, 8, = 0.86 and S, = 3-6 when h = h, cos 0.) Exact solutions given in the next 
section show that the inner gyre is a real feature and not just an artifact of the per- 
turbation method. 
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FIUURE 4. Perturbation transport Q = Q,, + PQ,. ( a )  Inviscid limit. 
(a) Intermediate system with E = E*. (c) Linear viscous limit. 

The result of increasing inertial effects by increasing E with fixed E )  can be seen by 
comparing case (a )  with case (b ) ,  which has E* = E = 0.1. The perturbation vorticity 
is advected away from the plateau and decays downstream. The gyre is shifted down- 
stream and reduced in size. The transport change is almost halved, owing to the 
smoothing out of topographic effects as E is increased. In  going from case ( b )  to case 
( c ) ,  E i  is reduced to 0.01 while E is unchanged. Perturbation vorticity is now swept 
right around the annulus. Recycling affects the flow pattern over the plateau, which 
is almost symmetIic. The transport is decreased by the dissipation decrease because 
the topographically generated vorticity is not being dissipated as rapidly as before. 
I n  the limit E*+O (case d) ,  the coefficient B, is zero and the flow is symmetric. The 
vorticity perturbation is caused by topographic stretching only. The reference level 
for the potential vorticity to 0(6), determined by viscous effects, is QT + m/e. Hence 
V24, is negative over the plateau, where h > E ,  and positive away from the obstacle, 
where h < m. As S = h,/&, increases, flow reversal first occurs at  the inner side wall 
at 6 = 7r for 6 = 3-0. A second gyre, centred about 8 = 0, forms a t  the outer side wall 
for S > 4.9. 

Hart (1977) has investigated quasi-inviscid flow in a rotating cylinder with bottom 
topography and a differentially rotating rigid lid. He used a = h,/s as an expansion 
parameter and solved the problem by considering higher-order terms in the vorticity 
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equation with E*/E - a. [With a small, the vorticity equation to zeroth order is the 
inviscid equation (2.12).] He found that the zonal correction was O(a2), and inde- 
pdent of E t  to that order. By setting E*/e - 6" < 1 in the perturbation solution given 
here, it is found that the flow corrections $1 and Q2 are given by the results in the 
inviscid limit. In  agreement with Hart, $1 and Q2 are independent of E* and the zonal- 
flow correction is O(S2). (In fact the quasi-inviscid solution for $ to O(S2) can be ob- 
tained from the general solutions for $l and Q2.) From the general solution, we further 
find that the zonal-flow correction is O(S2) for all B and E*. 

The transport Q, + S2Q2 for flow over the plateau, with QT = 1, is plotted against the 
parameter 6 in figure 4. All the graphs lie between those for the inviscid and viscous 
limits. It can in fact be shown from (4.13) that these limits always give bounds on the 
general solution, within the perturbation theory. 

That is, given h,, 8 and E* (and hence S for QT = l),  the corresponding Q satisfies 

Qvis Q < &in (4.16) 

correct to O(S2), where QviS and Qin are the viscous and inviscid transports for that 
value of 6. Inequality (4.16) holds for any r-independent topography h(0), but the 
transport curves depend on the actual shape. For instance, when h = h, cos 0 the 
Qvis and Qin curves (and hence all intermediate ones) are identical. 

These perturbation results are good approximations when S is sufficiently small. In  
the next two sections, exact solutions are found for the two limiting regimes; the term 
'sufficiently small' can then be defined more precisely. 

5. The linear viscous regime 

function for linear viscous flow is 
When E < E*, exact solutions can be found. The differential equation for the stream 

V2@ + J(@,  h / E ) )  = i&. (5.1) 

The general technique for finding @ is first to solve (5.1) using (3.1) and (3.2) with 
some initial estimate for Q. The transport equation (3.12) can then be used to get a 
better estimate for Q ,  and the process is repeated until the solutions converge. 

I n  the special case in which uT is irrotational (so that cT is everywhere zero), the 
system can be solved without iteration by putting 

@=QY 
Then Y is uniquely determined by 

V2Y + J(Y, h/E*)  = 0,  ( 5 . 3 4  

Y ( r l ,  0) = 0, Y(Y,, 0) = 1 (5.3b, c) 

and the transport is found from 

(5.4) 

Analytic solutions of (5.1) satisfying (3.1) and (3.2) with some given estimate for 
Q can be found when the flow is driven by a rigid lid for the following case. Suppose 
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FIUURE 5. Linear viscous flow over plateau topography, stream function contoured at equal 
intervals. (a) h,/E* = 2, Q = 1.8, Pm, = -0.01. ( b )  h,/E* = 4, Q = 1.5, Pdn = -0.08. 

that  the bottom topography varies with 6 only and is piecewise linear and continuous. 
Then in a section of constant slope EkS, the stream-function equation is 

V2$ + $,.S/r = nT. (5 .5 )  

The solution is found by separating the variables. This gives a particular solution 

i, 
I 

~Q2,r2+a,+b,ln(r/r,)  for S = 0,  

for S 4 0, - 2 ,  
~!2,r21nr+e,r2+f, for S = - 2  
RTr2/(4 + 2 s )  + c, + do(r/ro)-s 

and a homogeneous solution 
m 

$H = ( ~ / r ~ ) - ~  

ro = ( r l r2 )&,  

(a, cosh /3,8 + b, sinhp,O) cos [a,% In ( r / r o ) ] ,  (5.7) 
n=l 

where 

The constants a,, b,, c,, do, e,  and f, are determined from the side-wall conditions. 
The coefficients a, and b, are found by matching the solutions in each section, with 
the requirement that $, $r and $o be continuous. I n  practice this involves truncating 
the series and applying a Galerkin method. 

Solutions were calculated for the symmetric plateau topography shown in figure 2. 
It was found that two or three terms were sufficient to get a good approximation to 
the solution over most of the annulus and that about fire iterations were needed to 
find Q starting from Q = Q,. However, for the same computational effort, better solu- 
tions were obtained numerically by the direct inversion of finite-difference equations. 
This approach was simplified by first transforming the annulus into a periodic channel. 

Numerical solutions are shown in figures 5 ( a )  and ( b )  for S = ho/E* = 2 and 6 = 4 
respectively. The exact solutions show the same features as the perturbation results. 
Figures 3 ( a )  and 5 ( a )  can be compared directly. The gyre is slightly smaller and the 
transport slightly larger for the exact results. The exact solution is not quite anti- 
symmetric with respect to 8, and the vorticity is a function of r as well as 8. However, 
the differences are minor so the perturbation solution is a good approximation for 6 = 2. 

a ,  = ( 2 n  - 1) n/ln ( r 2 / r l ) ,  pi = a; + $ 8 2 .  
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When 8 is doubled, the size of the gyre is increased. The flow within the gyre is 
still quite weak, being about one-twentieth of the circumpolar transport. A perturba- 
tion solution for ho/E& = 4 gives a second gyre near the outer side wall. This feature 
is not seen in the exact result, so the first-order perturbation is no longer a good esti- 
mate when 6 = 4. 

Q decreases monotonically as ho/E* increases, as shown in figure 8. The dependence 
on 6 is initially parabolic, as predicted by the perturbation theory, but becomes linear 
as S increases. Comparison with the perturbation estimate (figure 4) shows that Q 
becomes increasingly larger than the estimated Q as S increases. An explanation of 
this behaviour is that t'he topographic effect u. V h  depends on the speed of the flow. 
When Q is reduced, as in the first iteration, the average flow speed decreases, so the 
flow perturbation decreases and the next estimate of Q is larger. For ho/E& > 6 the 
streamline deviations are large, and numerical difficulties were encountered. 

The exact stream function is proportional to aT, so the flow pattern depends only 
on the geometry of the system. This is a consequence of the linear viscous flow being 
independent of E ,  and is not true when inertial effects are significant, The stream 
function is also independent of the average dimensional depth when E < E i .  

6. The inviscid regime 
I n  the inviscid regime, the vorticity equation is 

Vz$+h/& = El($).  (6.1) 

Using the circulation condition (3.19), an expression for El($) involving CT, uio) and h 
can be found. From Green's theorem, the integral of the vorticity in the area A of the 
r ,  8 plane enclosed by any two streamlines $l and $2 is 

Hence the circulation condition gives 

(6.2) 

The area element dA is replaced by U-ldsd$, where the arc length s is measured 
along a streamline and U is the speed of the zeroth-order flow. Since (6.3) is true for 
any two streamlines, it follows that 

where the path of integration is a streamline. Substituting for V2$ from (6.1) leads to 

where W ( $ ,  s) = U-l/$ U-lds 

acts as a normalized weighting function. (This result can also be obtained from the 
vorticity equation by including terms to O(E*) . )  
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stretching of a fluid column following any streamline $ is 
An immediate consequence of (6.5) is that a reference level for the topographic 

h e r ( $ )  = Whds  (6.6) f 
(i.e. the topographically generated vorticity is zero where h = href). The height of the 
topography is weighted by the time taken for a fluid column to cross it, the weight 
favouring regions where the flow is relatively slow. The value of h,, is bounded by 
the maximum and minimum values of h found along that streamline. 

The second integral in (6.5) is similarly a weighted average of the driving vorticity 
felt by the flow around a streamline. For the special case of an annulus with CT = 2Q7. 
this term simplifies to 

which is independent of $. The vorticity equation is then 

V2$ + h/€ = hre,($)/s + fiT* 

Solutions of (6.7) subject to the boundary conditions (3.1) and the circulation 
condition (4.19) have been obtained numerically for a topography h(0) .  The method 
is iterative. A first estimate of @ is found by solving 

(6.8) 

(This is equivalent to the inviscid limit of the perturbation problem to O(S).) An 
improved estimate 

V2$ + h/€  = %/€ + QT 

such that $@I,@ = 0, $ @ 2 > @  = Qo. 

is then found by solving 

V2$new + h/€  = hreI($old)/s + QT,  (6.9) 

where $old is the previous estimate. The transport Q is corrected a t  each iteration by 
applying the circulation condition in the form 

&new = i Q o l d r T ( $ o l d ) / r ( $ o ~ d ) .  (6.10) 

The rationale for this is as follows. We want to end up with Qr($) = &!I?,($). 
The term r,(i+k) is independent of Q while F($) increases as Q increases. If 

r ( $ o l d )  > i r T ( $ o l d )  

then I?($) needs to be reduced (and vice versa), and this is achieved by applying (6.10). 
Plateau topography is again used as an example. The choice of a symmetric h(8) 

simplifies the actual calculations because the stream function has the same symmetry. 
For ho/eR, = 4, the streamlines for the original estimate are given in figure 3 (d )  and 
those of the final solutions are shown in figure 6. Figure 7 shows initial and final stream- 
lines for ho/eQZ, = 6. The initial solutions are modified in the following way. In  a gyre 
near the inner side wall, h,, < there. In  particular h,, +h,,, as 
$+$n,in in such a region. Similarly h,,, > E in a gyre near the outer side wall and 
h,,, 3 h,,, as $ + $,,,. Consequently the vorticity perturbation in a gyre region is 
decreased in magnitude. I n  the circumpolar flow region the flow near the inner side 
wall is relatively slow away from the plateau, and conversely for flow near the outer 
side wall. Hence h,,, > K for streamlines near the inner side wall and hrel increases as 

because h < 
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FIGURE 6. Inviscid flow over plateau topography, stream function contoured 
at equal intervals. hO/eQ1 = 4, Q = 1.65, $km,n = -0.01. 

FIGURE 7. Inviscid flow over plateau topography, stream function contoured at equal intervals, 
h0/e!& = 6. (a) Initial solution. (b) Final solution Q -- 1.15, $km,n = -0.2. 

I,+ increases. The overall effect is that where the flow is relatively slow the vorticity 
perturbation is decreased from the original estimate. 

Figures 6 and 7 ( b )  give the situation after fifteen iterations, when the solution has 
definitely converged. The inner gyre has grown in each case, while the outer gyre in 
figure 7 (a) has vanished. The reason for this behaviour is twofold. Pirst, the decrease 
in the vorticity perturbation in the gyres decreases the tendency for such regions to 
form. Second, the decrease in transport and associated general slowing down of the 
flow change the effect of the driving vorticity. When the topography is flat, .R, is 
just the vorticity required for the streamlines to be circles. When Q decreases and CIT 
is unchanged, this vorticity tends to bend the streamlines inwards. This inhibits outer 
gyres and enhances inner ones. 

In  both examples the final value of Q is almost the Fame as the perturbation esti- 
mate. (The perturbation and exact values are 1-64 and 1.65 for 6 = 4 and 1.18 and 
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FIGURE 8. Exact transport Q as a function of S. ( a )  8 = h,/E* (linear viscous). ( b )  S = h , / ~ n ~  
(inviscid). The inviscid perturbation transport to O(S2) is shown as a dashed line for comparison. 

1-15 for 6 = 6.) For 6 = 4 the initial and final flows are very similar, but for 6 = 6 
there are considerable differences. Hence for the inviscid regime the perturbation 
solutions are good approximations for 6 up to about 4. 

The transport Q is plotted against 6 in figure 8, and it is seen that Q decreases 
monotonically as h,/eQ2, increases. There is close agreement of the exact Q with the 
perturbation estimate. 

It is found that, apart from closed-streamline regions over flat topography, where 
href is constant, hret(@) increases as @ increases. Consequently d F / d @  2 0 for the 
plateau-topography example. Arnold (1965) has shown that a solution of an equation 
like (6.1) is stable if d P / d @  > 0 for all @ so the solution will definitely be stable if 
there are no gyres. When gyres are present, stability is not guaranteed, but the con- 
vergence of the solution method suggests that the solutions are stable. The convergence 
to a definite solution also suggests that the problem may have a unique solution, but 
as yet I do not have a proof of this. Note that, for a given stream function @, the 
associated topography h is not unique because any topography h(@) can be added to 
a solution for h. 

7. Conclusions 
Recycling flow over bottom topography in a rotating system has been studied. 

According to the ratio of the small parameters E and E*, the problem was divided into 
three regimes : linear viscous, intermediate and inviscid. In  order to have geostrophic flow 
over ridges, the non-dimensional topography height was restricted to O(max (8, I?*)). 
The recycling nature of the system meant that upstream conditions were not pre- 
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scribed. By considering the transport of fluid to O(Et),  a circulation condition was 
established that is believed to be necessary and sufficient to close the problem. 

When the effect of Ekman suction dominates inertial effects (E i  9 E )  the equations 
governing the geostrophic flow are linear. The topographic effect at any point is 
determined by the local slope of h in the direction of flow. Disturbances decay rapidly 
away from obstacles, and recycling usually has only a small effect on the flow pattern. 
For the inviscid regime, inertial effects dominate and dissipation has a significant 
effect only on a large length scale. Such a scale exists in a recycling flow, and viscous 
effects determine the flow via a circulation condition. I n  this case, recycling has a 
strong influence on the flow pattern. The different dynamics of these regimes give 
contrasting flow patterns over symmetric ridges. The inviscid flow is symmetric, 
whereas the linear viscous flow disturbance shows strong antisymmetric behaviour. 
A perturbation analysis of the general problem shows the transition from the linear 
viscous limit to the inviscid limit as e/Et  increases. 

The theoretical solutions agree qualitatively with the observations by Maxworthy 
(1977). He gives results and illustrations for flow over narrow radial ridges whose 
cross-sections form part of a circle for various values of E and E4. (Maxworthy uses 
E = A!2/2Q, where AQ is the dimensional differential rotation of the rigid lid.) The 
spin-up length e/E* then lies between 0.5 and 8 in nearly all cases (the exception 
being one example with E / E )  x 16). For e < E),  the flow is seen to bend sharply 
inwards over a rise and outwards over a negative slope, and a gyre forms a t  the inner 
side wall, starting over the downstream end of an obstacle. In  some cases, the gyre 
extends around almost to the upstream edge of a ridge, even for E < Ei. (For e < E8 
this occurs when 6 is numerically large, and linear viscous exact solutions also have 
this behaviour for large h,,,/E* and narrow obstacles. The large slopes cause large 
vorticity fluctuations in a small region and hence large and sharp disturbances to 
the flow.) As e is increased with E* fixed the gyre size decreases, and as s/E* is in- 
creased the flow pattern over a ridge changes from strongly antisymmetric to nearly 
symmetric with respect to 0.  

The examples of flow over plateau topography show that such obstacles can cause 
large disturbances to the flow over them and thus can have a significant effect on the 
transport in the system. As the plateau height is increased, the circumpolar flow is 
partially blocked and the transport decreases. The perturbation estimates of the cir- 
cumpoIar transport Q (as 6-t 0) seem to suggest that the linear viscous andinviscid 
limits represent bounds on Q. But the exact curves for Qvis and Qin us. 6 cross a t  
6 x 5 (see figure 8)) so this hypothesis is probably incorrect. Nevertheless, the exact 
Q for the intermediate regime is probably well estimated by an average like 

a t  least for values of 6 not too far in excess of 5. 
For the inviscid limit, there is close agreement between the perturbation estimate 

and the exact Q. (Graphs for both are shown in figure 8.) Hence the perturbation solu- 
tion is useful for estimating Q even when there are qualitative differences between the 
exact flow pattern and that to O(6).  There is also good agreement between the exact 
and perturbation calculations for the linear viscous limit for 6 5 2. Hence the 
perturbation method is expected to give good approximations for the difficult inter- 
mediate regime for 6 5 2, 
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A restriction to slowly varying topography was imposed. However solutions (not 
given here) have also been obtained by this analysis for step-like obstacles. The 
problem can be regarded as the limit 8, - 8, -+ 0, S --f oc, of a plateau with 

S(8,-8,) = ho = constant, 

S being the slope. In  the linear viscous limit a discontinuity occurs in the geostrophic 
velocity component parallel to the step edge. For the other regimes there is a dis- 
continuity in vorticity but not in velocity. 

Other problems not considered in this theory are ageostrophic effects and lateral 
diffusion of vorticity; the latter would of course smear out the discontinuities just 
referred to. When the topographic effects are large and the flow is almost blocked, jets 
form near the side walls and the side-wall layers would become dynamically important 
in practice. For geophysical applications the /3 effect should also be included. This 
can be incorporated as an additional topographic effect. 

I wish to express my thanks to Dr H. E. Huppert for suggesting the problem and for 
his advice during its subsequent development. The support of a Commonwealth 
Scholarship is gratefully acknowledged. 

Appendix A. Uniqueness of stream function for linear viscous flow 
The vorticity equation for linear viscous flow in an annulus with prescribed surface 

(A la )  
vorticity CT is 

Suppose that a function ljfl satisfies (A 1)  with corresponding transport Q = Q1. 
Then an infinite set of solutions of (A 1) is given by 

II. = $ 1 + Q 2 y ,  (A 2) 

where Q2 is arbitrary and Y is the function uniquely determined by (5.3). Hence (A 1)  
cannot have a unique solution if Q is not specified. 

The reason for this non-uniqueness is that insufficient information about the surface 
velocity uT has been included in the mathematical description. There are infinitely 
many velocity distributions uT with the same vorticity distribution g,. The problem 
is that Q depends upon uT as well as cT. The extra condition 

where 

is sufficient to resolve the problem. Suppose that two functions ljfl and $2 satisfy 
(A 1)  and (A 3), with transports Q1 and Qz respectively. Then it is found that 
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Hence Q1 = &, unless 

Equations (5.3) can be regarded as governing flow in a channel driven by a uniform 
surface velocity. By methods similar to those in appendix B, it is found that the 
transport must decrease if the topography is not flat, so the left-hand side of (A 6) 
must be negative. Hence +1 = +2 and the solution of (A 1 )  with (A 3) is unique. 

Appendix B. Transport in an annulus driven by a rigid lid 
We define parameters 

7 = j V - ' d s  ( V *  O ) ,  I = 

where the integrals are taken around a streamline for the interior flow. 7 is the time 
taken for a fluid element to complete a circuit of a streamline of length 1. By Schwarz's 
inequality we have 

(B 1 )  

r =  uas (B 2) s where 

is the circulation. 
For flow in an annulus driven by a rigid lid with CT = 252,) the interior velocity is 

(uI ,  2 r I )  = ( O )  t n T r )  

when the bottom topography is flat. Then 

710 = 4n/QZ, = i 2 / q 0  (B 3) 

(the subscript 0 denotes flat-bottom variables). Consider an irreducible streamline 
r = r (8) .  By the circulation condition, 

i2/rI = 212/r, = 12/!&A, (B 4) 

where 

is the area enclosed by r(8). Since 1 is the length of the perimeter of A ,  we have 

Z2/A 2 4n) (B 5 )  

with equality if and only if A is circular. Hence 

z2/rI 2 4T/n2T. 

Then, by (B 2) and (B 3), 
71 710. 
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Thus any fluid element takes longer to travel around the annular region when the 
streamlines are not circular. Hence any azimuthal variation in the topography must 
cause a decrease in the net transport Q .  (The streamlines remain circular for topography 
which is a function of r alone.) 
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